
Teradici Software Development Kit for Windows
Administrators' Guide

The PCoIP Client Software Development Kit (SDK) for Windows is a set of libraries and binaries

that allow developers to build custom PCoIP clients. The SDK is provided as part of Teradici Cloud

Access Platform and the resulting client can connect to Cloud Access Software Standard Edition

and Graphics Edition through the Cloud Access and Cloud Access Plus plans. The SDK includes

the following components:

• Code Examples

• Programming Guide

• Session Client Source Code

• Session Client Binary Executable

• Session Client Libraries and API Headers

• Session Client API Documentation

• Broker Client Example Code

• Broker Client Example Binary

• Broker Client Libraries and API Headers

Supported Platforms

The PCoIP Client SDK can be used on the following Windows operating systems:

• Windows 10 (64-bit)

• Windows 7

What Can You Build With the PCoIP Client SDK?

The PCoIP Client SDK provides developers the ability to embed a PCoIP session into any program

or solution, or create a standalone client with a completely custom user interface and workflow.

Teradici Software Development Kit for Windows Administrators' Guide

© 2019 Teradici 1



With complete control over how a PCoIP client is built, you can create clients that incorporate

customizations in both pre-session and in-session phases of a PCoIP connection. For example,

the following customizations are all typical use cases:

Pre-Session Customizations

• Customizing the client user interface to create a branded, end-to-end solution using company

assets such as:

• Corporate Logos

• Slogans, trademarks or other text

• Corporate colours and iconography

• Developing customized authentication workflows, either directly or using a broker.

• Automatically connecting users to specific desktops or applications, based on an identified

user type or task.

• Embedding a remote workload into an application.

In-Session Customizations

• Client branding, including:

• Menu item labels

• Window titles

• Application icons

• Company logos

• Automatic bridging of USB devices.

• In-session menu bar visibility.

• Disabling hot keys.

• Client display size in windowed and fullscreen mode.

• Configuring resolutions.

• Securely using local and bridged USB devices.

Available Documentation

• Teradici Client Software Development Kit for Windows

What Can You Build With the PCoIP Client SDK?

© 2019 Teradici 2



Who Should Read This Guide?

This guide provides information for software developers and systems integrators with an

understanding of SDK integrations and virtualization systems who are developing customized

PCoIP clients. Readers should already understand the Teradici Cloud Access Software and how it

is used in virtual environments, in both brokered and nonbrokered sessions. This guide will break

down how to use the session client executable and how to use the session client API. This

document is not intended for users who are unfamiliar with SDK integrations, or for Teradici Cloud

Access Platform users who do not require a customized PCoIP client. In this guide, you will learn

about:

• PCoIP Session Components and Considerations

• Customizing the PCoIP Session

• Setting up a PCoIP Agent Test Environment

• Setting up a Development Environment for Windows

• Troubleshooting Issues related to Setting up, Developing and Building the SDK

Understanding terms and conventions in Teradici guides

For more information on the industry specific terms, abbreviations, text converntions, and graphic symbols used in

this guide, see Using Teradici Product and Component Guides and the Teradici Glossary.



Who Should Read This Guide?

© 2019 Teradici 3

http://www.teradici.com/web-help/product_education/conventions/
https://www.teradici.com/web-help/Glossary/default.htm


What's New in This Release?

This release introduces the following features and enhancements to the PCoIP Client Software

SDK for Windows:

PCoIP Ultra

Teradici have introduced an update to the PCoIP protocol with PCoIP Ultra. It includes our latest

protocol enhancements, offering uncompromised 4K/UHD throughput, and efficient scaling

across multicore CPUs. This is an evolving feature that will continually improve with each release.

For more information on PCoIP Ultra, see PCoIP Ultra. To enable the PCoIP Ultra features through

the PCoIP Agent, see Enabling PCoIP Ultra.

Local Termination of ePadLink Electronic Signature Pad

This releases introduces support for local termination on ePad signature pads from InterLink.

Locally terminated signature pads have greatly improved responsiveness, and tolerate higher-

latency (25ms and higher) networks for accurate signature capture.

Enhanced Security and Stability

This release contains improvements and enhancements around the security and stability of the

Software Client.

What's New in This Release?

© 2019 Teradici 4

https://www.teradici.com/what-is-pcoip/pcoip-ultra
https://www.teradici.com/web-help/pcoip_agents/19.05/graphics-agent-windows/admin-guide/features/pcoip/ultra/#enabling-pcoip-ultra


About PCoIP Sessions

Establishing a PCoIP session involves a number of key components, including system actors,

PCoIP session phases, and connection brokers as discussed next.

System Actors

There are at least three components that work together to create a PCoIP session:

• PCoIP Client The hardware or software device, local to the user, which requests and drives the

PCoIP session by negotiating with PCoIP brokers and PCoIP agents.

• PCoIP Broker Brokers maintain lists of active users, their authentication information, and the

host machines they can connect to. Except for systems using direct connections, all PCoIP

sessions are negotiated via third-party brokers.

• PCoIP Agent The Teradici extension installed on the host machine. The PCoIP agent is the

single point of access for PCoIP clients, and handles all video, audio, and USB exchanges

between the client and desktop.

The following diagrams show the actors outlined above in a brokered and direct connection:

Terminology: Hosts and Desktops

Host refers to a Windows, or Linux machine, either virual or physical, which has a PCoIP agent installed and cann

serve a remote desktop to a PCoIP Client. Desktop refers to an entity which is delivered to the client as a remote

workload. This is typically a full Windows or Linux desktop, but it can also be configured to present a single

application.



About PCoIP Sessions

© 2019 Teradici 5



Direct Connection 

Brokered Connection 

System Actors

© 2019 Teradici 6



Session Client Integration

There are two methods of integrating the in-session phase, integrating using the session client

binary or using the session client API. The following diagrams show these methods in relation to

integrating the SDK into a custom application:

Session Client Binary Integration

This method uses the session client binary as a separate in-session application. This is the

simplest way to use the client SDK and it is recommended as the initial mode to use for developing

your own client. In this mode the pre-session and session phases are handled by separate

executables:

• Write a custome pre-session executable according to yout workflow and needs using the 

 source code as a starting point. For more information see Session

Client API Integration.

• Use th stock  executable, which is located within the SDK at product/

window/x86/release/ClientSession.dmg, to establish the connection. By default, 

 will be installed to the /Applications folder.

broker_client_example

ClientSession.app

ClientSession.app

Security Considerations

The values passed to the ClientSession app executable include sensitive information required to establish a session

with the host. In particular, the connection tag is a single-use time-limited (60 seconds) token that allows the

ClientSession app executable to connect to the host as an authenticated user. If an attacker is able to gain visibility to

command line parameters as they are passed to client session, it is possible that could use them before

ClientSession app does and gain access to the host as that user. It is vital to ensure good security practices are

applied to the client machine to prevent it being compromised. This type of attack can be avoided completely by

integrating the pre-session and ClientSession app into a single executable as described in the following section.



Session Client Integration

© 2019 Teradici 7



Binary Integration 

Session Client API Integration

This method uses the session client API to integrate the in-session functionality into a custom

application. This method is necessary if you wish to modify the behavior of the ClientSession app

executable beyond that which is possible via its command line interface, or if you need to integrate

the pre-session and ClientSession app into a single executable. In this mode you will use: - The

broker_client_example source code as a starting point for writing custom pre-session functionality

- The ClientSession app source code as a starting point for integrating with the Session Client API.

The Session Client API provides a simple high level C++ interface for configuring, starting, and

stopping a session using the values obtained from a broker.

Session Client API Integration

© 2019 Teradici 8



Session Client API Integration 

*Partner Virtual Channel Plugins can be developed using the Virtual Channel SDK, to enable this

you can combine the PCoIP Client SDK with the PCoIP Virtual Channel SDK. For more information,

see the [VChan Guide]

Session Client API Integration

© 2019 Teradici 9



PCoIP Core API Integration

There are two methods of integrating the in-session phase, integrating using the session client

binary or using the session client API. The following diagrams show these methods in relation to

integrating the SDK into a custom application:

Session Client Binary Integration

This method uses the session client binary as a separate in-session application. This is the

simplest way to use the client SDK and it is recommended as the initial mode to use for developing

your own client. In this mode the pre-session and session phases are handled by separate

executables:

• Write a custome pre-session executable according to yout workflow and needs using the 

 source code as a starting point. For more information see Session

Client API Integration.

• Use th stock  executable, which is located within the SDK at product/

window/x86/release/ClientSession.dmg, to establish the connection. By default, 

 will be installed to the /Applications folder.

broker_client_example

ClientSession.app

ClientSession.app

Security Considerations

The values passed to the ClientSession app executable include sensitive information required to establish a session

with the host. In particular, the connection tag is a single-use time-limited (60 seconds) token that allows the

ClientSession app executable to connect to the host as an authenticated user. If an attacker is able to gain visibility to

command line parameters as they are passed to client session, it is possible that could use them before

ClientSession app does and gain access to the host as that user. It is vital to ensure good security practices are

applied to the client machine to prevent it being compromised. This type of attack can be avoided completely by

integrating the pre-session and ClientSession app into a single executable as described in the following section.



PCoIP Core API Integration

© 2019 Teradici 10



Binary Integration 

Session Client API Integration

This method uses the session client API to integrate the in-session functionality into a custom

application. This method is necessary if you wish to modify the behavior of the ClientSession app

executable beyond that which is possible via its command line interface, or if you need to integrate

the pre-session and ClientSession app into a single executable. In this mode you will use: - The

broker_client_example source code as a starting point for writing custom pre-session functionality

- The ClientSession app source code as a starting point for integrating with the Session Client API.

The Session Client API provides a simple high level C++ interface for configuring, starting, and

stopping a session using the values obtained from a broker.

Session Client API Integration

© 2019 Teradici 11



Session Client API Integration 

*Partner Virtual Channel Plugins can be developed using the Virtual Channel SDK, to enable this

you can combine the PCoIP Client SDK with the PCoIP Virtual Channel SDK. For more information,

see the [VChan Guide]

Session Client API Integration

© 2019 Teradici 12



PCoIP Session Phases

There are two phases in a PCoIP session:

• Pre-session In the pre-session phase, a PCoIP client communicates with a PCoIP broker to

authenticate a user and obtain a list of desktops for which that user is authorized. The client

then presents this list to the user for selection, and asks the broker to establish a PCoIP

session with the selected desktop.

• Session In the session phase, the PCoIP session has been successfully launched and the

client is connected to the remote desktop. Once the PCoIP connection is established, a

session client is invoked by the pre-session client. The session client is primarily a conduit

between the host and the client applications. For a list of customizable in-session properties,

with examples, see Customizing the PCoIP Session.

PCoIP Session Phases

© 2019 Teradici 13

/customizable_session_features/


About Brokered and Non-Brokered Connections

PCoIP-compatible brokers are resource managers that authenticate users and dynamically assign

authorized host agents to PCoIP clients based on the identity of the user. PCoIP clients can

connect to PCoIP agents using a PCoIP-compatible broker, called a brokered connection, or

directly, called a non-brokered or direct connection. The broker client library included in the Client

SDK is designed to communicate with PCoIP-compatible brokers using the PCoIP Broker Protocol.

In direct connections, when no broker is used, the PCoIP agent acts as its own broker. The client

makes the same calls to the broker client library in either case.

Example pre-session Client

The included pre-session client, , uses the included broker client library to execute

transactions using the PCoIP Broker Protocol. This example client demonstrates how to establish both brokered and

non-brokered connections



broker_client_example.exe

About Brokered and Non-Brokered Connections

© 2019 Teradici 14



Customizable Session Features

The following PCoIP session features can be customized:

• Session Menu bar Visibility

• Disable Hot Keys

• Windowed or Fullscreen Mode

• Set Host Resolution

• Custom Client Branding

• Image Scaling

• Maintain Aspect Ratio

• USB Auto Forward

• USB VID/PID Auto Forward

• Disable USB

• Locale

• Session Log ID

• Log Level

• Log File Name

• Force Native Resolution

Disable Session Menu Bar Visibility

To enhance the user experience the PCoIP Session Client enables the menu bar by default,

however some use cases may require that it be disabled, or hidden, in order to prevent the user

Examples show command-line usage

The examples shown here invoke the session client via the command line. You can also set these properties when

invoking the session client programmatically.



Customizable Session Features

© 2019 Teradici 15



from accessing menu functionality. To disable the menu bar feature use the parameter 

.

Disable Hot Keys

To improve usability, session hot keys, such as Ctrl+Delete+F12 (which disconnects a PCoIP

session) are available to users by default. The parameter for this feature is .

Windowed or Fullscreen Mode

Depending on your application needs, you can display the PCoIP session in either windowed or

fullscreen mode. Fullscreen mode allows the display topology to support multiple monitors as an

extended desktop; windowed mode gives you the flexibility to display multiple application windows

in parallel and switch between them quickly. Windowed mode improves the user experience, as

well as resulting in an increase in performance. Windowed mode is the default mode, and to

activate fullscreen mode use the  parameter.

Set Host Resolution

Normally, the session client opens with arbitrary window dimensions. In some cases, you may

wish to lock the resolution of your host application displays. This ensures the user’s viewing

experience is consistent across different monitors and their native resolutions. The parameter for

this feature is .

• Host Resolution Limitations: It is only possible to specify one target resolution for all displays.

The host resolution will not perform to its optimal capability if you have monitors with different

resolutions.

Custom Client Branding

You can customize the branding of your custom session client in several ways by creating a client

branding package. These customizations affect the user’s experience once they have connected to

disable-

menubar

disable-hotkeys

full-screen

set-host-resolution

Disable Hot Keys

© 2019 Teradici 16



their PCoIP session. The parameters for this feature are  and .

The following elements can be customized in the session client:

• The OS application title and logo

• The session client toolbar title and logo

• The logo displayed in the OS taskbar

• The following default menu item label:

• About PCoIP Client

• Quit PCoIP Client

• The content shown in the About dialog:

• Replace the dialog text

• Provide hyperlinks to corporate resources and product information

• Add a custom logo

• Customize a client alert and message window titles.

Image Scaling

The image scaling feature enables scaling on the client without having to specify the desktop

resolution. You can apply image scaling when the resolution of the client monitor is not the same

as the resolution provided by the host. This feature provides a smoother process for image scaling

on the client. The parameter for this feature is .

Maintain Aspect Ratio

If the host and client aspect ratios do not match, and this parameter is not used then the display

will be stretched to fit. The parameter for this feature is . If the native

aspect ratios of the host’s display and the client’s display do not match, the host’s aspect ratio will

be preserved and will appear in the client with black bars either on the sides or top and bottom of

the display.

branding-package branding-hash

enable-scaling

maintain-aspect-ratio

Image Scaling

© 2019 Teradici 17



USB Auto-Forward

Automatic bridging enables you to auto bridge all non-HID USB devices. Use the 

 parameter.

USB Vendor ID/Product ID Auto-Forward

You can automatically forward up to 20 USB devices to the host at the start of the session by

calling the session client executable with  and the required VID/PID pairs.

Devices that are auto-forwarded will appear in the USB Devices dialog box, enabling users to

connect or disconnect them from the host. The following rules apply to VID and PID values:

• VID/PID values are comma-separated: ,

• VID/PID pairs are space-separated:  

• VID/PID pairs with invalid values will be discarded. Discarded rules appear in the event log.

• Up to 20 devices will be passed; if more than 20 are attempted, the first 20 will be accepted

and rest ignored. Ignored rules appear in the event log.

Disable USB

You can disable USB functionality in the client with the  parameter.

Locale

The Local feature enables you to use the appropriate localized user interface for the client session.

This feature will make the session GUI more flexible to accomodate a wide range of languages.

You can choose the language translation you require by setting the  parameter. The

following table states the available language translations and codes:

usb-auto-

forward

vidpid-auto-forward

xxx yyy

aaa, bbb ccc,ddd

disable-usb

locale

Locale Code Language

de German

es Spanish

USB Auto-Forward

© 2019 Teradici 18



Session Log-ID

 is an optional UUID that uniquely indentifies the session in all PCoIP log files.

Log Level

 is the log level parameter. It is possible to over-ride the default log-level, which is 2, by

specifying a different log-level parameter. All messages at the specified level or lower will be

logged.The following parameters apply:

• 0 = Critical

Locale Code Language

fr French

it Italian

ja Japanese

ko Korean

pt Portuguese (EU)

pt_BR Portuguese (Brazil)

ru Russian

tr Turkish

zh_CN Chinese (Simplified)

zh_TW Chinese (Traditional)

Default Language

By default, the language is set to English.



log-id

log-level

Session Log-ID

© 2019 Teradici 19



• 1 = Error

• 2 = Info

• 3 = Debug

Log File Name

The default location of the log file may be overridden using the  parameter to specify a

full path and file name for the log-file.

Force Native Resolution

The resolution of the client monitor can be set to the native resolution when the session client is

launched using the  parameter

Troubleshooting and Support

When reproducing issues for the purposes of troubleshooting and support, set the log level to Debug.This will enable

you to capture a log of all information messages and errors.



logfile

Custom Location

If a custom location is used for the log file then the support bundler script should be updated to capture the logs from

that location.



force-native-monitor-resolution

Log File Name

© 2019 Teradici 20



Setting Up a PCoIP Agent Test Environment

Before developing your custom client, you should set up a working PCoIP system. Teradici

recommends establishing a small proof-of-concept system for custom client testing, consisting of

a host machine with an installed PCoIP agent.

To establish a working proof-of-concept test system:

1. Establish your host virtual machine and determine the PCoIP agent that best fits your actual

PCoIP environment.

2. Install the PCoIP agent on the host machine. For PCoIP agent installation instructions, refer to

the appropriate administrators' guide:

• PCoIP Standard Agent for Windows Guide

• PCoIP Graphics Agent for Windows Guide

• PCoIP Standard Agent for Linux Guide

• PCoIP Graphics Agent for Linux Guide

3. Install your agent license on the host machine. For license installation instructions, see the

Administrators' Guide for your host machines PCoIP agent.

License Requirment

Before using your test environment, you must install a PCoIP agent development license on the host machine. You

received a license when you subscribed to a Teradici All Access solution, specifically Cloud Access or Cloud Access

Plus. If you do not have a license, obtain one from Teradici before proceeding.



PCoIP System Architecture Reference

For details about proof-of-concept deployments, including supported PCoIP agents, environments, and operating

systems, see Teradici All Access Architecture Guide.



Setting Up a PCoIP Agent Test Environment

© 2019 Teradici 21

https://www.teradici.com/web-help/TER1608004/Default.htm
https://docs.teradici.com/find/subscription/cloud-access/product/cloud-access-software/2.15/component/standard-agent-for-windows/2.15.0
https://docs.teradici.com/find/subscription/cloud-access-plus/product/cloud-access-software/2.15/component/graphics-agent-for-windows/2.15.0
https://docs.teradici.com/find/subscription/cloud-access/product/cloud-access-software/2.15/component/standard-agent-for-linux/2.15.0
https://docs.teradici.com/find/subscription/cloud-access-plus/product/cloud-access-software/2.15/component/graphics-agent-for-linux/2.15.0


Connecting To Your PCoIP Agent

Once your test system is set up, you can establish PCoIP connections to it using Teradici PCoIP

Software Clients. For environment testing and troubleshooting purposes, the Teradici PCoIP

Software Client is available here:

• Teradici PCoIP Software Client for Windows

Establishing a PCoIP Connection Using a Teradici PCoIP
Software Client

To test your development environment, make a direct (unbrokered) connection to your

development host using a Teradici Software Client. If you are able to connect using a Teradici

software client, your host is correctly configured. The following illustrations show examples of the

pre-session phases using a Teradici software client:

Connecting To Your PCoIP Agent

© 2019 Teradici 22

https://docs.teradici.com/find/subscription/cloud-access/product/cloud-access-software/2.15/component/software-client-for-windows/19.05


Pre-Session Connection 

 

Establishing a PCoIP Connection Using a Teradici PCoIP Software Client

© 2019 Teradici 23



Session Client Binary

The SDK is bundled with a session client binary, which can be invoked via command line or

programmatically from a pre-session client. The session client for Windows is located in the SDK

distribution on the following path:

• [working directory]

\pcoip_client_sdk_session\product\windows\x86\Release\ClientSession.app

For an example of programmatically invoking the in-session client, search for  in 

pcoip_client_sdk/modules/broker_client_example/src/broker_client_example_main.c. After the

PCoIP connection is established, several command line options are available from the in-session

client, as outlined above.

launch_session

Session Client Binary

© 2019 Teradici 24



Branding Your Session Client

You can customize the branding of your custom session client in several ways by creating a client

branding package. These customizations affect the user’s experience once they have connected to

their PCoIP session. The following elements can be customized in the session client:

• The OS application title and logo

• The session client toolbar title and logo

• The logo displayed in the OS task bar

• The following default menu item labels:

• About PCoIP Client

• Quit PCoIP Client_ (Windows only)

• The content shown in the About dialog:

• Replace the dialog text

• Provide hyperlinks to corporate resources and product information

• Add a custom logo

• Customize client alert and message window titles.

Branding Your Session Client

© 2019 Teradici 25



Creating a Branding Text Layout File

The layout file format used to customize the session client is an UTF-8 XML text file. The layout

schema is a top-level  element with a version attribute describing the

schema version, and containing the required elements described next:

The available elements are outlined in the following table:

<pcoip-client-branding/>

<pcoip-client-branding version="1.0">
...
</pcoip-client-branding>

Parent

Element

Child

Element

Description

Required! The name of your custom session client. This will be used as the

application window file.

Required! The file name of your application icon. In Windows, this appears in the

Windows toolbar and the window header.

Required! Describes the text labels used in OS toolbar menu's.

The text label for the About... menu item. Optional. Without this field, there will not be

an About menu item.

The text label for the Quit... menu item. Optional. Without this field, you will not have

a Quit menu item.

Required! Describes the contents of the About... dialog. Must have the following

required attributes: title (string): The dialog text and minWidth (number): The

minimum pixel width of the dialog. For example: 

<app-

name>

<app-

icon>

<toolbar-

menu>

<about-

item>

<quit-

item>

<about>

<about title="My Custom 

Client" minWidth="100">

Creating a Branding Text Layout File

© 2019 Teradici 26



A full text layout file looks like this:

Parent

Element

Child

Element

Description

Describes a line of text in the dialog. All lines are optional, but the About window will

be empty unless you provide at least one.  accepts the following attributes: 

align (string keyword): The text alignment; for example, "center". This alignment

applies to all child elements of the line. Lines can be self-closed to create a blank line

().  can contain the following elements:  contains a filename for a

logo or other graphic element: .  contains

the display text for each line: 

.  takes a url parameter and creates a working hyperlink: 

.

<line>

<line>

<line> <logo>

<logo>about_logo.png</logo> <text>

<text>This text is displayed on the line. </

text> <hyperlink>

<hyperlink url="www.teradici.com">Teradici</hyperlink>

<?xml version="1.0" encoding="UTF-8"?>
<pcoip-client-branding version="1.0">
<app-name>My Custom Client</app-name>
<app-icon>app_icon.png</app-icon>
<toolbar-menu>
<about-item>About My Custom Client</about-item>
<quit-item>Quit My Custom Client</quit-item>
</toolbar-menu>
<about title="About My Custom PCoIP Client" minWidth="0">
<line align="center"><logo>about_logo.jpg</logo></line>
<line />
<line align="center"><text>My PCoIP Client</text></line>
<line align="center"><text>Version 0.0.0</text></line>
<line align="center"><text>© Copyright 2016 My
Corporation</text></line>
<line align="center">
<hyperlink url="www.my-company.com">My company</hyperlink>
</line>
<line />
<line align="center">
<text>For help, click here: </text>
<hyperlink url="www.google.com">Google</hyperlink>
</line>
</about>
</pcoip-client-branding>

Creating a Branding Text Layout File

© 2019 Teradici 27



Creating a Branding Package

In order to customize your session client, you must create a client branding package using the

Teradici Custom Branding Package Utility. The Teradici Custom Branding Package Utility is located

in the following location:

• Windows Clients: 

To create a custom branding package:

1. Create a product icon (png, 128px x 128px).

2. Create a company logo (png, any size).

3. Create a text layout file describing the customized UI element strings and dialog content.

4. Create the branding package using .

The system will respond with the output file and hash:

5. Note both the output file name and the hash value. These will be passed to .

pcoip_client_sdk_session\product\windows\x86\Release\TeradiciBrandingPackageUtility.exe

TeradiciBrandingPackageUtility

TeradiciBrandingPackageUtility.exe -x my_custom_branding.txt -o
my_custom_branding.bp -i my_custom_icon.png

Output file: my_custom_branding.bp
Hash:
cbc3fd3c6d001a1e1f06342bcccf2a62bd748c3cf1dd2e4c9c29561ea07bd089

client_session

Creating a Branding Package

© 2019 Teradici 28



Using the Branding Package

Once you have created the branding package, it can be used by the session client. The pre-session

client is responsible for verifying the package and passing it to the session client executable.

To use the branding package:

1. Verify the branding package signature.

2. Call the session client executable and pass the branding package name and hash, noted when

creating the branding package, using the parameters  and 

.

For example (one command):

-branding-package -branding-

hash

client_session -branding-package my_custom_branding.bp
-branding-hash
cbc3fd3c6d001a1e1f06342bcccf2a62bd748c3cf1dd2e4c9c29561ea07bd089
<other-params>

Using the Branding Package

© 2019 Teradici 29



Limits on Customization

You may not be able to programmatically modify certain session features due to limitations

imposed by the operating systems's user interface.

Windows Limitations

The application process name in Windows Task Manager cannot be altered at run time. The

process name will be PCoIP Client.

Bypassing run-time Configuration Limitations

The limitations described here are enforced at run time. It is possible to bypass these restrictions by editing the

application executable. Modifying this file will invalidate the Teradici signature.



Limits on Customization

© 2019 Teradici 30



Supporting USB Devices

Transferring non-HID USB devices from the client to the host is called bridging. Both the PCoIP

agent on the host machine and the PCoIP client must enable bridging before devices can be

transferred. By default, Windows PCoIP agents allow bridging of all USB devices. Administrators

can globally disable USB bridging support, or enforce device whitelists or blacklists, using GPO

variables on the host machine. Clients cannot bridge devices that are disallowed by the agent.

There are two methods of providing USB support from your PCoIP client:

• Automatic: Automatically bridged devices are passed from the pre-session client to the

session client executable, which forwards them to the host agent. No user interaction is

required.

• Manual: Manually bridged devices are selected by the user, during a PCoIP session, from the

session client UI.

Controlling USB support on Windows PCoIP Agents

For information about USB bridging configuration on Windows PCoIP agents, see one of the following guides: - 

Teradici PCoIP Graphics Agent 2.15 for Windows Administrators' Guide - Teradici PCoIP Standard Agent 2.15 for

Windows Administrators' Guide



USB support on Linux PCoIP Agents

Linux PCoIP agents do not support non-HID USB devices. Only HID devices such as keyboards and mice can be used

with Linux PCoIP agents.



Windows Clients Require an Additional Package

To enable USB support on Windows clients, you must install the Client USB package



Supporting USB Devices

© 2019 Teradici 31

https://www.teradici.com/web-help/pcoip_agent/graphics_agent/windows/2.15.0/
https://www.teradici.com/web-help/pcoip_agent/standard_agent/windows/2.15.0/
https://www.teradici.com/web-help/pcoip_agent/standard_agent/windows/2.15.0/


Manually Bridging USB Devices

If you need to support more than 20 USB devices, or if you expect your users to control which

devices can be bridged, they can be manually added by opening the client’s USB Devices menu and

enabling them.

Manually Bridging USB Devices

© 2019 Teradici 32



Updating the Client USB Package

The Client USB package must be uninstalled before installing a new version.

To update the Client USB Package:

1. Open a command line window.

2. Navigate to the directory where the Client USB package was originally installed.

3. Run the uninstaller located in the _USB_ directory.

4. Follow the directions in Installing the Client USB Package for Windows

Rebooting is not Necessary

The installer will recommend rebooting after uninstalling. This is only necessary if you will not be reinstalling, and wish

to completely remove the driver from your system. If you will be reinstalling the Client USB package, rebooting is not

necessary.



Updating the Client USB Package

© 2019 Teradici 33



Exit Codes for Programmatic USB Installations and
Uninstallations

You can make the installer and uninstaller calls programmatically from your client application. The

return and exit codes you should expect are summarized in the following tables:

Installer Return/Exit Codes

0: Success, no reboot required. Expected on a fresh installation.

1: Success, reboot required. Unexpected, but harmless.

2: Success, installation continues after reboot. Expected when running the installer during an upgrade without

rebooting (installing a new version after uninstalling an old version, with no reboot in between). This indicates that

while the driver is usable immediately, additional action has been scheduled following the next reboot. This prevents

scheduled actions by the uninstaller from disabling the driver.

-1: Error, general. An unexpected error occured. The most likely cause is insufficient privileges to install drivers, or

another permissions issue.

Uninstaller Return/Exit Codes

0: -

1: Success. Expected

2: -

-1: Error, general. An unexpected error occured. The most likely cause is insufficient privileges to ininstall drivers, or

another permissions issue

Exit Codes for Programmatic USB Installations and Uninstallations

© 2019 Teradici 34



Installing the Client USB Package for Windows

USB support in Windows applications is provided by the Client USB package. The Client USB

package installs a filter driver that attaches to USB hub driver instances. This filter driver enables

the PCoIP client software to take ownership of USB devices, so they can be forwarded to the host.

The Client USB package must be installed if you want to integrate USB features into your client.

To install the Client USB package:

1. Open a command line window.

2. Enter the following command (all as one line):

Where:

•  is the location where the  was unpacked.

•  suppresses the recommendation to reboot after install.

•  automatically closes the installer after installation.

•  specifies the base path for installation.

For example, this command will install the USB package under 

{working directory}\pcoip_client_sdk_
session\product\windows\x86\Release\usb\PCoIP_Client_USB_
installer.exe /noreboot /autoclose /D={path}

{working_directory} pcoip_client_sdk_session

/noreboot

/autoclose

/D={path}

An Uninstaller is automatically created

An uninstaller will be placed at .



{path}\USB\

Silent Mode

To install or uninstall without pop-up messages, use the  parameter when running the installer.



\S

C:\Program Files 

(x86)\Teradici\PCoIP Client\:

Installing the Client USB Package for Windows

© 2019 Teradici 35



{working directory}
\pcoip_client_sdk_session\product\windows\x86\Release\usb\PCoIP_Client_USB_installer.exe
/noreboot /autoclose /D="C:\Program Files (x86)\Teradici\PCoIP Client"

Installing the Client USB Package for Windows

© 2019 Teradici 36



PCoIP Support Bundler Tool

Teradici may request a support file from your system to help troubleshoot and diagnose PCoIP

issues.

To create a support file:

1. Open a terminal window

2. Launch the support bundler:

The file will be created and placed in the user's home directory.

<root_dir>/products/windows/x86/Release/ClientSupportBundler.exe

PCoIP Support Bundler Tool

© 2019 Teradici 37



Using the Broker Client Example

The SDK provides a sample command line pre-session client called broker client example. This

would enable you to call the included broker client libraries and establish a PCoIP connection. The

broker client example demonstrates the success path for establishing new PCoIP sessions.

The sample broker client is located here: 

There are several files in this directory, but only two are relevant for the broker client example: - 

 - 

The  executable is the sample command-line client; the  text

file contains authentication information used by the client.

Remote sessions established by  are exactly the same as sessions

established using the PCoIP software client, except that the input values are provided by 

 instead of the client’s user interface.

Do not use the Broker Client Example in Production

The broker client is provided as an example only, and should not be used in production. The client does not have

thorough error handling and does not validate or sanitize user input.



<dev root>/product/<os>/<arch>/<Debug|Release>/

broker_client)example.exe login_info.txt

broker_client_example login_info

About 

The broker client example uses a small local text file to supply session input values. The following is a sample 

 file (one line):

In this example:

• The FQDN of the host server is 

• The Domain is 

• The User is 

• The Password is 

• The Host name is 

 login_info.txt

login_info.txt

sal-w2k8-ch605.autolab.local autolab autorunner "mypassword"
sal-w2k8-ch605

sal-w2k8-ch605.autolab.local

autolab

autorunner

mypassword

sal-w2k8-ch605

broker_client_example.exe

login_info.txt

Using the Broker Client Example

© 2019 Teradici 38



Initiate Broker Connection Flow

To initiate the broker connection with the broker client example, set up your  file

and then call  using  as an argument.

To initiate the broker connection using the broker client example:

1. Open  in a text editor.

2. Add the following information, in this order, separated by spaces:

• The FQDN of the host server

• The server domain

• The User name

• The User password

• The Host name

3. Save the text file.

4. Open a command prompt and change directory to: 

.

5. Open a Windows command line tool and type:

The broker client example will display a status message similar to the one shown below:

login_info.txt

broker_client_example.exe login_info.txt

login_info.txt

/product/<os>/<arch>/<debug|

release>/

# broker_client_example.exe login_info.txt

Connected Successfully.
Desktop ID : sal-w7p64-sa15.autolab.local
ip_addr : 10.64.60.147
port : 4172
connect_tag:
SCS1fw0Zbk+Eu7q2iz0/M7mxfEE52au/3Jedtgp16L/rA8iB00+Er+YJd0yIL0xd9M
v5V0CDLSDmUNkOCwyyV1+u3w1aA7hXxEWmzhAA
session_id : 2305843009213693954
sni : SAL-W7P64-SA15
URI: "teradici-pcoip://10.64.60.147:4172?sessionid=
2305843009213693954&sni=SAL-W7P64-SA15", PARAMETERS: "connect-

Initiate Broker Connection Flow

© 2019 Teradici 39



tag=SCS1fw0Zbk%2bEu7q2iz0%2fM7mxfEE52au%2f3Jedtgp16L%2frA8iB00%2bE
r%2bYJd0yIL0xd9Mv5V0CDLSDmUNkOCwyyV1%2bu3w1aA7hXxEWmzhAA"

Initiate Broker Connection Flow

© 2019 Teradici 40



Launching the Session Client from Broker Client
Example

Use the  switch (lowercase L, for launch) to have the broker client example invoke the session

client. This enables you to send invoke the session client without worrying about the 60-second

connect tag window.

To establish a new PCoIP connection using the  switch:

1. Open a command prompt and change directory to 

2. Run the command line client, providing the  file as an argument:

l

l

/product/<os>/<arch>/<debug|

release>/.

login_info.txt

broker_client_example.exe login_info.txt l

Launching the Session Client from Broker Client Example

© 2019 Teradici 41



Passing Customization Parameters to the Session
Client

When using the  parameter to automatically pass session information to the session client, you

can pass additional session client parameters by enclosing them in double quotes. This enables

you to demonstrate session client functionality without racing to build a command line string

within the session client’s 60-second window. For example, to invoke the session client with the

menu bar disabled, type:

l

broker_client_example.exe login_info.txt l "disable-menubar"

Passing Customization Parameters to the Session Client

© 2019 Teradici 42



The Broker Client Example

The included sample broker client demonstrates how the APIs can be used to customize and

control the pre-session and session phases of the connection.

Code is an API Demonstration Only

The sample session client, described in the following sections, demonstrates a simple connection scenario using the

supplied . The example unrealistically assumes that all requests and calls succeed as

expected, and performs only basic error handling. An actual client implementation is likely to be far more complex; for

example, you will need to handle failed broker certificate verification, account for other authentication steps beyond a

simple user ID and password combination, and any other circumstances dictated by your system requirements.



broker_client_library

The Broker Client Example

© 2019 Teradici 43



The Broker Client Example Sequence

This section describes how the broker client example implements the PCoIP session sequence. It

also provides an overview of invoking and using the executable session client.

PCoIP Session-Creation Steps and Actors

The steps indicated below are used and documented in the bundled sample code. Refer to the

code for specific function calls, expected return values and error-handling requirements. The

example C++ code can be found in the SDK package located here:

Custom Broker Client Library Implementations

PCoIP clients interact with PCoIP-compatible brokers and PCoIP agents using an abstraction layer called a broker

client library. The following example uses the supplied broker client library. You may, however, choose to write your

own broker client library to meet specific requirements, or use a thirdparty broker library which does not use the PCoIP

Broker Protocol. Refer to the PCoIP® Connection Broker Protocol Specification for details on how to design and

implement your own connection broker.



Direct (non-brokered) connections

When there is no PCoIP broker in a system, as in direct connections, the PCoIP agent acts as its own broker. Clients

make the same calls to the Broker Client Library whether there is a PCoIP broker inline or not.



The Broker Client Example Sequence

© 2019 Teradici 44



PCoIP Session Sequence used by the Sample Client 

Each of these steps is used in the sample code, with a comment identifying the step number.

PCoIP Session-Creation Steps and Actors

© 2019 Teradici 45



1. Set a logging function The  requires users to provide a log function

as part of the logging mechanism. A log function template is provided in the example code.

2. Create a broker handle Create a handle for the broker instance.

3. Set client information This information identifies your client to the broker. It should include the

client name, client version, and client platform.

4. Set broker address and behavior on unverified certification This step identifies the address of

the broker you want to connect to, and specifies error handling in the event the broker identity

cannot be verified. Alternatively, this could also be an Amazon Workspaces registration code.

5. Authentication between the broker and the client This step requests an authentication

method from the broker, and then submits the user’s authentication information to the broker

using the supplied authentication method. The client must implement all the authentication

methods required by the broker.

6. Request desktop list Once the client is successfully authenticated by the broker, request a list

of host servers (desktops) that the authenticated user is allowed to access.

7. Retrieve desktop info Loop through each desktop in the list acquired in step 6, requesting the

name and ID of each desktop.

8. Process the desktop list Perform any processing required on the desktop list, and provide it to

the user interface for selection.

9. Connect to selected host server This step asks the broker to set up the PCoIP session. The

broker then contacts the agent, which supplies the necessary information (most notably the

session tag) the client will need to establish the connection later. The PCoIP session is not

established yet at this stage.

10. Clear session with broker On a successful connection, clear the broker session. This

effectively disconnects the client from the broker.

Custom Log Implementations

You can design and implement your own logging functionality, so along as it follows the same callback signature of

the log function template that is required by the PCoIP Client SDK API.



broker_client_library

Desktop Selection Presentation Customization

At this stage, you can also customize the dialogue and interface the user will use to select a desktop.



PCoIP Session-Creation Steps and Actors

© 2019 Teradici 46



11. Get desktop connection information and launch the session Request the connection and

security properties from the desktop (for example, its IP address, its port number, or a session

ID), and handle errors if any of the required properties are not returned.

12. Proceed with established session This step invokes , and implements the

actual PCoIP connection. For specific instructions regarding establishing PCoIP connections,

see How to Establish a PCoIP Session.

13. Free desktop connection information When the in-session client has been invoked, dispose of

the collected desktop information.

14. Destroy the broker client handle Destroy the broker handle.

client_session

PCoIP Session-Creation Steps and Actors

© 2019 Teradici 47



How to Establish a PCoIP Session

Before you can establish a PCoIP session with a host desktop, gather the following host desktop

details:

• IP Address

• Port number

• Session ID

• Server name indication (SNI)

• Connection tag

This information can then be passed to the provided in-session client to establish a PCoIP session

programmatically. See the example code for specific call syntax. In terms of programming

interface, there are two ways that the connection and security information can be presented to 

:

• Pass the pieces of Information Individually to the Executable The following command

invokes  to establish a PCoIP session and passes the connection and

session information as parameters, where:

• Connection tag: 

• IP address: 

• Session ID: 

- Encode all information into a string container (URI) and then pass to the executable The

following command invokes  to establish a PCoIP session and passes

the connection tag as a parameter and a URI encapsulating the IP address and Session ID in a

string container, where:

ClientSession.app

ClientSession.app

SCS1WsopFJ3iz1l48PTJMXFkcD4b6M9aiakHXH3ellLhUROBceWAifSSn%2b4AV1FC8IihWVmsISmYFKeA25AtzFrdMpdaC

10.64.60.115

2305843009213693961

client_session.exe -i connect-tag=
SCS1WsopFJ3iz1l48PTJMXFkcD4b6M9aiakHXH3ellLhUROBceWAifSSn%2b4AV1FC
8IihWVmsISmYFKeA25AtzFrdMpdaCtqlic0zfxAA address=10.64.60.115
session-id=2305843009213693961

ClientSession.app

How to Establish a PCoIP Session

© 2019 Teradici 48



• Connection Tag: 

• URI: "teradici-pcoip://10.64.60.115:4172?sessionid= 230584300921369396"

SCS1WsopFJ3iz1l48PTJMXFkcD4b6M9aiakHXH3ellLhUROBceWAifSSn%2b4AV1FC8IihWVmsISmYFKeA25AtzFrdMpdaCtqli

URI Format Documentation

There is a document describing the URI format in the root of the SDK,



client_session connecttag=
SCS1WsopFJ3iz1l48PTJMXFkcD4b6M9aiakHXH3ellLhUROBceWAifSSn%2b4A
V1FC8IihWVmsISmYFKeA25AtzFrdMpdaCtqlic0zfxAA "teradicipcoip://
10.64.60.115:4172?session-id=230584300921369396"

How to Establish a PCoIP Session

© 2019 Teradici 49



Using the Client Session API

Use of the Client Session C++ API is demonstrated in 

. It includes the steps outlined in the diagram

below:

 

PCoIP Session Client API Sequence Diagram

Each of these steps is used by the Session Client API, with a comment identifying the step

number:

1. Setup Environment and Implementations: Os specifc initialization. Instantiate a Configuration

Provider object.

2. Parse Command Line: Define and parse supported command line parameters.

3. Setup Session Options: Validate the options passed via the command line and setup the

Configuration Provider object accordingly.

4. Setup Session Connection Information: Pack the session parameter, received via the

command line, into the structures required by the API.

<pcoip_client_sdk_session/modules/

client_session/src/client_session_main.cpp>

Using the Client Session API

© 2019 Teradici 50



5. Get Session Instance and Run:: Obtain the main session object, set the Configuration Provider

and run the session. The run call blocks until the session is terminated.

6. Post-Session Clean-up: Performs any post-session shutdown processing.

Using the Client Session API

© 2019 Teradici 51



Setting Up the Development Environment

Once you have successfully established a session between a PCoIP Software Client and a PCoIP

host, you can start developing your own PCoIP client. To begin, set up your client development

environment, as discussed next.

To set up your client development environment:

1. Choose and populate a directory for third-party libraries, currently only OpenSSL is required.

Either unpack  into this location, or download and

manually build the latest version of OpenSSL.

1. Set an environment variable called  pointing to the location chosen in

step 1.

2. Choose or create a working directory and unpack the SDK archive 

 into it.

session_client_third_party*.tar.gz

Library Names and Versions

Library names and specific versions are encoded in the path names within the third-party tree.



OpenSSL version

 only contains the version of OpenSSL available at the time of distribution.

You need to obtain and update any future security updates that may be issued.



session_client_third_party*.tar.gz

LOCAL_THIRD_PARTY

(pcoip_client_sdk_windows*.<rev_info>)

USB funtionality in Windows Client Applications

If you will be incorporating USB devices into your Windows client application, you must also install the Client USB

package. For instructions, see Supporting USB Devices.



Setting Up the Development Environment

© 2019 Teradici 52



Updating SDK Components

Updating the SDK to a new version can be done by replacing the old binaries with new versions in

place. There is no special upgrade path. Upgrading components will not break compatibility with

existing APIs.

Updating SDK Components

© 2019 Teradici 53



Windows Prerequisites

The following must be installed to build the PCoIP Client SDK on Windows:

• Python 2.7 Select 32-bit https://www.python.org/downloads/windows/ The 32-bit version of

Python must be used even when installing on a 64-bit OS. Make sure Python is in the system

PATH.

• MS Visual Studio 2015 with Update 3 https://www.visualstudio.com/downloads/

• CMake 3.4.1 https://cmake.org/download/ Make sure CMake is in the system PATH; CMake

does not automatically add itself to the system PATH during installation.

CMake Version Requirement

The PCoIP Client SDK does not support versions of CMake higher than 3.4.3.



Windows Prerequisites

© 2019 Teradici 54

https://www.python.org/downloads/windows/
https://www.visualstudio.com/downloads/
https://cmake.org/download/


Configuring CMake for PDB Files

In addition to the full .pdb files, a project can be configured to generate stripped  files by

adding the  linker switch. For example, in CMake:

All full  files are copied over automatically to  if 

 is defined in the cmake file. Stripped  files are generated at

the location where the  file is located.

.pdb

/PDBSTRIPPED:filename

* set_target_properties( pcoip_client PROPERTIES LINK_FLAGS "/DEBUG
/PDBSTRIPPED:pcoip_client.pdb" )

.pdb CMAKE_PDB_OUTPUT_DIRECTORY

CMAKE_PDB_OUTPUT_DIRECTORY .pdb

.vcxproj

Microsoft Documentation

For more information on debugging with symbols, see https://msdn.microsoft.com/en-us/library/windows/desktop/

ee416588(v=vs.85).aspx



Configuring CMake for PDB Files

© 2019 Teradici 55

https://msdn.microsoft.com/en-us/library/windows/desktop/ee416588(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ee416588(v=vs.85).aspx


Windows Build Procedure

1. From the Windows Control Panel, set an environment variable called 

pointing to the third party libraries.

a. Open System in Control Panel.

b. Click on Advanced system settings.

c. On the Advanced ta, click Environment Variables.

d. In the lower box labeled System Variables, click New.

e. In the Variable Name field, type .

f. In the Variable Value field, enter the full path to root of the third-party libraries.

g. Click OK on each of the three open dialogs.

2. Open a Windows cmd.exe shell and change directory to the root of the unpacked 

 source directory.

3. Run python gencmake.py. This will invoke CMake and generate the required Visual Studio

2013 solution and project files.

4. Open the  solution file in Visual Studio 2015.

5. Build the solution.

Packaging

All files needed to run the client, except the Microsoft Visual Studio 2015 redistributable, are

contained in the  directory.

LOCAL_THIRD_PARTY

Windows 7 Procedure

This procedure is correct for Windows 7. Other versions of Windows may use slightly different methods to

define environment variables.



LOCAL_THIRD_PARTY

pcoip_client_sdk_windows*.<rev_info>

.\build\client.sln

product\WINDOWS\x86\[Debug|Release]

Windows Build Procedure

© 2019 Teradici 56



The Application Dump File

If a crash happens within , an application generates a dump file with

the .dmp extension. Client application .dmp files are saved in the folder where all log files are

stored. The path to the log files is  for the session

client. The .dmp file can also be saved manually during a debugging process in Visual Studio.

When the Visual Studio debugger stops at an exception, close the pop-up window, choose Save

Dump As under the DEBUG tab, and save the dump file.

broker_client_example.exe

%LocalAppData%\Teradici\PCoIPClient\logs

Debugging Crashes in client_session.exe

The SDK does not include files for debugging  crashes. If a crash happens in 

, the  file should be sent to Teradici for analysis



ClientSession.app

ClientSession.app .dmp

The Application Dump File

© 2019 Teradici 57



Files Required for Debugging

The following are a list of files required to debug a crash:

• .exe files

• .dll files

• .pdb files

• .dmp file

• source files

The PCoIP Client SDK contains the  files and the  files. The  file that caused the

crash should also be in the same directory as the  files. You must use the  files that

were generated when the  and  files were built.

.dll .pdb .exe

.dll .pdb

.exe .dll

Files Required for Debugging

© 2019 Teradici 58



Debugging a Crash

The following steps outline how to debug a crash in :

1. Open Visual Studio 2015.

2. Select File>Open>File.

3. From the file selection diaglog, browse to the  file and open it.

4. Locate the Actions box at the top-right corner of the summary and click Debug with Native

Only to start debugging.

5. If Visual Studio cannot find the path to the source file, it will present an alert dialog and enable

you to manually specify the path. If this occurs, provide the actual path to the source files. If

you do not have the files, click Cancel to proceed without them.

6. Locate the location of the crash under the Call Stack tab in the Visual Studio debugging

window.

broker_client_example.exe

.dmp

Setting the Symbol Path

If the  files are not found, the path should be specified in the  environment variable, or,

locate the Actions box and choose Set symbol paths at the top-right corner of the summary pagem and

configure the path there.



.pdb _NT_SYMBOL_PATH

Debugging a Crash

© 2019 Teradici 59



Frequently Asked Questions

The following are answers to commonly asked questions when contemplating how to develop

custom PCoIP Clients using the Teradici PCoIP Client SDK.

Q: Can I brand the pre-session client with my company logo and colors? A: Yes. Your Teradici

Cloud Access Platform agreement will contain detailed information about corporate logos. Follow

the Teradici branding guide for including the PCoIP trademark in your final design.

Q: Are there guidelines for using the Teradici and PCoIP Brand? A: Yes. Refer to http://

www.teradici.com/docs/brand-guide for details.

Q: Does the SDK support localization? A: Yes. In pre-session you have complete flexibility to

create clients that incorporate customizations. In-session, you can use the  parameter to

pass a locale to .

Q: Does my client need Teradici licenses to operate? A: The client itself does not need a license to

operate, but the PCoIP agents that it connects to do require licenses. License handling is

performed by the PCoIP Broker or PCoIP agent, depending on the connection type. It is not

handled by the client.

Q: How can I add additional functionality to my PCoIP Client? A: If you have requirements that go

beyond the default capabilities of the Client SDK, you can integrate the PCoIP Virtual Channel SDK.

The Virtual Channel SDK gives you the ability to create custom PCoIP Virtual Channel plugins

which stream data between clients and hosts.

Q: Will my client work with all PCoIP agents? A: Yes. The PCoIP protocol works with Cloud Access

and Cloud Access Plus.

Q: Is consulting offered by Teradici for the Client SDK? A: Cloud Access Platform customers

receive support as described in the general support terms of your agreement. For additional

consulting services, contact Teradici.

Q: Does the SDK provide API for using managed installation systems like MSI? A: The SDK does

not provide an API for managed installation. You are free to choose your own installation method,

including MSI.

locale

ClientSession

Frequently Asked Questions

© 2019 Teradici 60

http://www.teradici.com/docs/brand-guide
http://www.teradici.com/docs/brand-guide


PCoIP Software Development Kit for Windows
Release Notes

Release Overview

The PCoIP Client Software Development Kit (SDK) is a set of libraries and binaries provided to

Teradici Cloud Access Platform customers who require the ability to customize and build a PCoIP

client.

With control over how the PCoIP client is built, you can:

• Build clients that conform to your company style and branding guides.

• Build clients that adapt to customized workflows (for example, embed a PCoIP session into a

software solution).

PCoIP Client SDK 19.05 introduces new fixes and updates to the previous release. This article

provides a summary of key additions, compatibility notes, resolved issues, and known issues for

this release.

To build additional functionality, such as extended peripheral support, you can utilize the Teradici

PCoIP Virtual Channel SDK.

What's New in This Release

This release introduces the following features and enhancements to the PCoIP Client Software

SDK for Windows:

PCoIP Ultra

Teradici have introduced an update to the PCoIP protocol with PCoIP Ultra. It includes our latest

protocol enhancements, offering uncompromised 4K/UHD throughput, efficient scaling across

multicore CPUs and support for third-party codecs. For more information on PCoIP Ultra, see 

PCoIP Ultra. 

PCoIP Software Development Kit for Windows Release Notes

© 2019 Teradici 61

https://www.teradici.com/what-is-pcoip/pcoip-ultra


Local Termination of ePadLink Electronic Signature Pad

This releases introduces support for local termination on ePad signature pads from InterLink.

Locally terminated signature pads have greatly improved responsiveness, and tolerate higher-

latency (25ms and higher) networks for accurate signature capture.

Enhanced Security and Stability

This release contains improvements and enhancements around the security and stability of the

Software Client.

Important Notes and Requirements

• The SDK is intended for Cloud Access Software who require some client customizations when

PCoIP Software Client for Windows and Mac, PCoIP Zero Clients, and PCoIP Mobile Clients do

not meet their needs.

• The SDK is intended for customers with software development skills and knowledge, as well

as a sound understanding of virtualization systems.

Release Downloads

• PCoIP Client Software Development Kit 19.05 for Windows

Related Documents and Software

• PCoIP Client Software Development Kit 19.05 for Windows Developers' Guide

• PCoIP Virtual Channel Software Development Kit 1.1 Release Notes

• Open-source and third-party components

Local Termination of ePadLink Electronic Signature Pad

© 2019 Teradici 62

https://help.teradici.com/s/api-sdk
http://www.teradici.com/web-help/pcoip_client_sdk/windows/19.05.0/
http://www.teradici.com/web-help/pcoip_virtual_channel_sdk/1.1.0/release_notes/
http://www.teradici.com/third-party-licenses


Release History

Resolved Issues

None.

Known Issues

Version/Build Date Description

3.5.0 April 2018 GA release

3.6.1 July 2018 GA release

3.7.0 October 2018 GA release

3.8.0 February 2019 GA release

19.05 May 2019 GA release

Supported Clients

PCoIP Client SDK

for Windows

PCoIP Client SDK for Windows is compatible with the following Windows operating

systems:Note: PCoIP clients are not supported with Windows Embedded Standard 7 or

Windows Embedded Standard 8 systems.

Supported Hosts

Teradici Cloud Access Platform

Release History

© 2019 Teradici 63



USING AN INVALID OR CORRUPT BRANDING PACKAGE CRASHES CLIENT (61678)

If the branding package does not match the hash value specified for the branding package, the

session client will terminate.

Workaround:

Replace the corrupt branding file or use the correct hash value.

BRIDGED USB DEVICES DISCONNECTED WHEN SWITCHING TO WINDOWED MODE (54679)

When the client has more than one monitor, switching from Full-screen to Windowed mode will

disconnect all bridged USB devices.

CANCELLING LARGE USB FILE TRANSFER FAILS (40817)

Cancelling a large file from being copied to, or from, a USB flash drive while bridged in PCoIP

software client fails to function. The file will continue to copy until finished.

Workaround:

Do not try to cancel large file transfers.

USB KEYBOARDS DO NOT WORK IN BRIDGED MODE (40580)

Keyboards do not work when bridged. This affects both Windows and macOS PCoIP Software

Client.

Workaround:

Do not bridge the keyboard. Keyboards function correctly when locally terminated.

Known Issues

© 2019 Teradici 64


	Teradici Software Development Kit for Windows Administrators' Guide
	Supported Platforms
	What Can You Build With the PCoIP Client SDK?

	Who Should Read This Guide?
	What's New in This Release?
	PCoIP Ultra
	Local Termination of ePadLink Electronic Signature Pad
	Enhanced Security and Stability

	About PCoIP Sessions
	System Actors

	Session Client Integration
	Session Client Binary Integration
	Session Client API Integration

	PCoIP Core API Integration
	Session Client Binary Integration
	Session Client API Integration

	PCoIP Session Phases
	About Brokered and Non-Brokered Connections
	Customizable Session Features
	Disable Session Menu Bar Visibility
	Disable Hot Keys
	Windowed or Fullscreen Mode
	Set Host Resolution
	Custom Client Branding
	Image Scaling
	Maintain Aspect Ratio
	USB Auto-Forward
	USB Vendor ID/Product ID Auto-Forward
	Disable USB
	Locale
	Session Log-ID
	Log Level
	Log File Name
	Force Native Resolution

	Setting Up a PCoIP Agent Test Environment
	Connecting To Your PCoIP Agent
	Establishing a PCoIP Connection Using a Teradici PCoIP Software Client

	Session Client Binary
	Branding Your Session Client
	Creating a Branding Text Layout File
	Creating a Branding Package
	Using the Branding Package
	Limits on Customization
	Windows Limitations

	Supporting USB Devices
	Manually Bridging USB Devices
	Updating the Client USB Package
	Exit Codes for Programmatic USB Installations and Uninstallations
	Installing the Client USB Package for Windows
	PCoIP Support Bundler Tool
	Using the Broker Client Example
	Initiate Broker Connection Flow
	Launching the Session Client from Broker Client Example
	Passing Customization Parameters to the Session Client
	The Broker Client Example
	The Broker Client Example Sequence
	PCoIP Session-Creation Steps and Actors

	How to Establish a PCoIP Session
	Using the Client Session API
	Setting Up the Development Environment
	Updating SDK Components
	Windows Prerequisites
	Configuring CMake for PDB Files
	Windows Build Procedure
	Packaging

	The Application Dump File
	Files Required for Debugging
	Debugging a Crash
	Frequently Asked Questions
	PCoIP Software Development Kit for Windows Release Notes
	Release Overview
	What's New in This Release
	PCoIP Ultra
	Local Termination of ePadLink Electronic Signature Pad
	Enhanced Security and Stability
	Important Notes and Requirements
	Release Downloads
	Related Documents and Software
	Release History

	Resolved Issues
	Known Issues
	USING AN INVALID OR CORRUPT BRANDING PACKAGE CRASHES CLIENT (61678)
	USING AN INVALID OR CORRUPT BRANDING PACKAGE CRASHES CLIENT (61678)
	BRIDGED USB DEVICES DISCONNECTED WHEN SWITCHING TO WINDOWED MODE (54679)
	CANCELLING LARGE USB FILE TRANSFER FAILS (40817)
	USB KEYBOARDS DO NOT WORK IN BRIDGED MODE (40580)



